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Abstract

In 1846, Ernst Eduard Kummer conjectured a distribution of values

of a cubic Gauss sum after computing a few values by hand. This

was forgotten about for nearly 100 years until John von Neumann

and Herman Goldstine attempted to verify the conjecture as a way to

test the new ENIAC machine in 1953. They found evidence that the

conjecture was false, but trusted Kummer more than they did their

digital computer. The conjecture would hold until 1979, when Roger

Heath-Brown and Samuel Patterson proved it to be false.

A few years earlier in 1965, Mikio Sato and John Tate independently

came up with a conjecture which gave the correct distribution of

these cubic Gauss sums – although it was expressed slightly

differently in terms of counting points of elliptic curves over finite

fields. In this talk, we give an overview of the Sato-Tate Conjecture,

present an approach by Jean-Pierre Serre following his paper from

1967, then sketch the 2006 proof of the conjecture following the

ideas of Laurent Clozel, Michael Harris, Nicholas Shepherd-Barron

and Richard Taylor.
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Gauss’s Theorem

Theorem (Carl Friedrich Gauss, 1798)

Consider the Fermat curve F3 : a
3 + b3 + c3 = 0.

If either p = 3 or p ≡ 2 (mod 3), then #F3(Fp) = p + 1.

If p ≡ 1 (mod 3), then there exist integers ap and bp such that

#F3(Fp) = p + 1− ap and 4 p = a2p + 27 b2p.

p #F3(Fp) ap bp

7 9 −1 1
13 9 5 1
19 27 −7 1
31 36 −4 2
37 27 11 1
43 36 8 2

p #F3(Fp) ap bp

61 63 −1 3
67 63 5 3
73 81 −7 3
79 63 17 1
97 117 −19 1
103 117 −13 3
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Gauss’s Theorem

Corollary

Consider the elliptic curve E : y2 − y = x3 − 7. For all primes p 6= 3,

(√
p − 1

)2 ≤ #E (Fp) ≤
(√

p + 1
)2
.

Proof. We have a bijection

F3 : a3 + b3 + c3 = 0 → E : y2 − y = x3 − 7

(a : b : c) 7→ (−3 c : −4 a+ 5 b : a+ b)

Hence

p + 1−#E (Fp) = ap =

{
0 if p ≡ 2 (mod 3),

±
√
4 p − 27 b2p if p ≡ 1 (mod 3).

In either case we have
∣∣p + 1−#E (Fp)

∣∣ ≤ 2
√
p.
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Proof of Gauss’s Theorem

First assume that p ≡ 2 (mod 3). We have a bijection

P1(Fp) →
{
(a : b : c) ∈ P2(Fp)

∣∣∣∣ a3 + b3 + c3 = 0

}

(α : β) 7→
(
−α : −β :

(
α3 + β3

)(2p−1)/3
)

Now assume p ≡ 1 (mod 3). There exists a nontrivial cubic character
χp : F×

p → C×. Upon setting χp(0) = 0, define the Gauss sum

τ(χp) =
∑

α∈Fp

χp(α) ζ
α
p = −e iθp/3√p

for some angle θp . Note that for any α ∈ Fp, we have the formula

#

{
a ∈ Fp

∣∣∣∣ a
3 = α

}
= 1 + χp(α) + χp(α)

2.
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Proof of Gauss’s Theorem

Now define Jacobi sum as

J(χp , χp) =
∑

α+β=1

χp(α)χp(β) =
τ(χp)

2

τ(χ2
p)

= −e iθp√p.

Writing J(χp , χp) = cp + dp ζ3, we have
∣∣J(χp , χp)

∣∣2 = c2p − cp dp + d2
p .

Choose the rational integers

ap = dp − 2 cp

bp = dp/3

}
=⇒




4 p = a2p + 27 b2p

ap ≡ 2 (mod 3)

Finally, count the number of points:

#F3(Fp) = 3 +
∑

α+β=1

#

{
a ∈ Fp

∣∣∣∣ a
3 = α

}
×#

{
b ∈ Fp

∣∣∣∣ b
3 = β

}

= p + 1 + J(χp , χp) + J(χ2
p, χ

2
p)

= p + 1− ap .
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Kummer’s Conjecture

Conjecture (Ernst Eduard Kummer, 1846)

For each rational prime p ≡ 1 (mod 3), consider the cubic Gauss sum as

τp =
∑

α∈Fp

ζp
α3

= τ(χp) + τ(χ2
p) = −2

√
p cos

θp
3
.

Then
(
1 : 2 : 3

)
is the proportion of p for which τp lies in the intervals

[
−2√p, −√p

]
,

[
−√p, √p

]
, and

[√
p, 2
√
p
]
.

Recall that

2 cos θp = −
J(χp, χp) + J(χ2

p , χ
2
p)√

p
=

ap√
p
.
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Verification of Kummer’s Conjecture?

KummerClass[p_Integer] :=

Round[

(1 + 2 Sum[ Cos[(2 Pi n^3)/p], {n, (p-1)/2}]) / (2 Sqrt[p])

]

KummerHistogram[bound_Integer] := Module[{pmod3, class},

pmod3 = Select[

Table[ Prime[n], {n, PrimePi[bound]}],

Mod[#,3]==1&];

class = Table[ KummerClass[pmod3[[n]]], {n, Length[pmod3]}];

Return[Histogram[

class, Automatic, "Probability",

PlotRange -> {{-1,2}, {0.0,0.6}}, Axes -> {False,True}]

]]
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Verification of Kummer’s Conjecture?

Proposition (Ernst Eduard Kummer, 1846)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

45 primes p ≤ 500 with
(
7 : 14 : 24

)
≈
(
1 : 2 : 3

)
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Verification of Kummer’s Conjecture?

Proposition (John von Neumann and Herman Goldstine, 1953)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

611 primes p ≤ 10 000 with
(
138 : 201 : 272

)
≈
(
2 : 3 : 4

)
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Verification of Kummer’s Conjecture?

Proposition (Emma Lehmer, 1956)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 000 primes p ≤ 17 550 with
(
240 : 322 : 438

)
≈
(
3 : 4 : 5

)
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Verification of Kummer’s Conjecture?

Proposition (Carl-Erik Fröberg, 1974)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

8 988 primes p ≤ 200 000 with
(
2370 : 2990 : 3628

)
≈
(
4 : 5 : 6

)
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Kummer’s Conjecture

Conjecture (Ernst Eduard Kummer, 1846)

For each rational prime p ≡ 1 (mod 3), consider the cubic Gauss sum as

τp =
∑

α∈Fp

ζp
α3

= τ(χp) + τ(χ2
p) = −2

√
p cos

θp
3
.

Then
(
1 : 2 : 3

)
is the proportion of p for which τp lies in the intervals

[
−2√p, −√p

]
,

[
−√p, √p

]
, and

[√
p, 2
√
p
]
.

Theorem (Roger Heath-Brown and Samuel Patterson, 1979)

Kummer’s conjecture is false: the angles θp defined by 2 cos θp =
ap√
p

are equidistributed in [0, π] with respect to the measure dµ =
1

π
dθ.
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Falsification of Kummer’s Conjecture!

Histogram of θp = cos−1 p + 1−#F3(Fp)

2
√
p

for p ≤ 1 000 000
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Can we generalize this?

Inequality: (√
p − 1

)2 ≤ #E (Fp) ≤
(√

p + 1
)2
.

Angle:

ap√
p
= 2 cos θp in terms of ap = p + 1−#E (Fp).

“Equidistributed”?
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Elliptic Curves

Given a field k , consider the equation

E : y2 + a1 x y + a3 y = x3 + a2 x
2 + a4 x + a6.

Define the following constants as elements of k :

c4 = a41 + 8 a21 a2 + 16 a22 − 24 a1 a3 − 48 a4

c6 = −a61 − 12 a41 a2 − 48 a21 a
2
2 − 64 a32 + 36 a31 a3

+ 144 a1 a2 a3 − 216 a23 + 72 a21 a4 + 288 a2 a4 − 864 a6

∆(E ) = −a41 a2 a23 − 8 a21 a
2
2 a

2
3 − 16 a32 a

2
3 + a31 a

3
3 + 36 a1 a2 a

3
3

− 27 a43 + a51 a3 a4 + 8 a31 a2 a3 a4 + 16 a1 a
2
2 a3 a4

− 30 a21 a
2
3 a4 + 72 a2 a

2
3 a4 + a41 a

2
4 + 8 a21 a2 a

2
4

+ 16 a22 a
2
4 − 96 a1 a3 a

2
4 − 64 a34 − a61 a6 − 12 a41 a2 a6

− 48 a21 a
2
2 a6 − 64 a32 a6 + 36 a31 a3 a6 + 144 a1 a2 a3 a6

− 216 a23 a6 + 72 a21 a4 a6 + 288 a2 a4 a6 − 432 a26
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Elliptic Curves

Given a field k , consider the equation

E : y2 + a1 x y + a3 y = x3 + a2 x
2 + a4 x + a6.

If k has characteristic different from 2 and 3, we may write

E : y2 = x3 − 3

122
c4 x −

2

123
c6 and ∆(E ) =

c34 − c26
123

.

We say E is an elliptic curve defined over k if ∆(E ) 6= 0. We will focus
on the collection of k-rational points

E (k) =

{
(x1 : x2 : x0) ∈ P2(k)

∣∣∣∣∣
x22 x0 + a1 x1 x2 x0 + a3 x2 x

2
0

= x31 + a2 x
2
1 x0 + a4 x1 x

2
0 + a6 x

3
0

}

having a specified base point O = (0 : 1 : 0). Define the j-invariant as

j(E ) =
c34

∆(E )
= 123

c34
c34 − c26

.
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Group Law

Let P ,Q ∈ E (k). Denote P ∗ Q as the point of intersection of E and the
line through P and Q, and denote P ⊕ Q = (P ∗ Q) ∗ O.

-4.8 -4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4 4.8

-3.2

-2.4

-1.6

-0.8

0.8

1.6

2.4

3.2

P

Q
P*Q

P+Q

Theorem (Henri Poincaré, 1901)

Consider an elliptic curve E defined over a field k. Then (E (k), ⊕) is
abelian group with identity O = (0 : 1 : 0) and inverses [−1]P = P ∗ O.
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Properties of Elliptic Curves

Consider an elliptic curve E defined over a field k . Recall the following:

The ℓ-adic Tate module is the finite dimensional Qℓ-vector space

Vℓ(E ) =

(
lim←−
n

E [ℓn]

)
⊗Zℓ

Qℓ

in terms of the torsion subgroup E [m] =
{
P ∈ E (k)

∣∣ [m]P = O
}
.

There exist embeddings as Z-algebras

Z
[
Gal
(
k/k

)]
→֒ End(E ) →֒ End

(
Vℓ(E )

)
.

Viewing σ ∈ Gal
(
k/k

)
→֒ GL

(
Vℓ(E )

)
, define the degree as

deg(σ) =
[
k(E ) : σ∗k(E )

]
= det(σ).

If σ ∈ End(E ) has deg(σ) = m, there exists σ̂ ∈ End(E ) such that

σ ◦ σ̂ = σ̂ ◦ σ = [m].
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Hasse Inequality

Theorem (Helmut Hasse, 1934)

Consider an elliptic curve E defined over a field k.

The pairing tr : End(E )× End(E )→ Z defined by

tr (σ, σ′) = deg(σ + σ′)− deg(σ)− deg(σ′)︸ ︷︷ ︸
in Z

= σ ◦ σ̂′ + σ̂ ◦ σ′

︸ ︷︷ ︸
in Z →֒ End(E)

is a positive definite quadratic form.

Assume that k = Fp. The polynomial Q : Z× Z→ Z defined by

Q(x , y) = deg
(
x − σp y

)
= x2 − ap x y + p y2

in terms of the trace ap = p + 1−#E (Fp) = σp + σ̂p implies

(√
p − 1

)2 ≤ #E (Fp) ≤
(√

p + 1
)2
.
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Zeta Function of an Elliptic Curve

Corollary

Consider an elliptic curve E defined over k = Fp.

(Rationality) With αp, βp =
(
ap ± i

√
4 p − a2p

)
/2, we have

αp + βp = ap

αp · βp = p
and #E (Fpn) = pn + 1− αn

p − βn
p .

In particular, we have the identity

ζE/Fp
(s) = exp

[
∞∑

n=1

#E (Fpn)
1

n pns

]
=

1− ap p
−s + p1−2s

(1− p−s) (1 − p1−s)
.

(Riemann Hypothesis) If ζE/Fp
(s) = 0 then Re(s) = 1/2.

(Functional Equation) If ζE/Fp
(1− s) = ζE/Fp

(s).
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ℓ-adic Galois Representation of an Elliptic Curve

Consider an elliptic curve E defined over k = Q. Assume moreover that
E is defined over Z, and ℓ is a prime which does not divide ∆(E ).

By considering the continuous action of the absolute Galois group
on the ℓ-adic Tate module, we have a continuous representation

ρE ,ℓ : Gal
(
Q/Q

)
→ GL2(Qℓ).

For every prime p, we have a short-exact sequence

{1} → Ip → Gal
(
Qp/Qp

)
→ Gal

(
Fp/Fp

)
→ {1}.

As long as p ∤ ℓ ·∆(E ), the inertia group Ip acts trivially on Vℓ(E ).

tr ρE ,ℓ(σp) = αp + βp = ap

det ρE ,ℓ(σp) = αp · βp = p

Using the Hasse Inequality, we can write

αp = e+iθp
√
p

βp = e−iθp
√
p

=⇒ ap√
p
= 2 cos θp.
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Unitary Galois Representation of an Elliptic Curve

Theorem

Consider an elliptic curve E defined over k = Q. There exists a
normalized continuous complex Galois representation

ρ
(2)
E : Gal

(
Q/Q

)
→ SU2(C)

in terms of the special unitary group

SU2(C) =

{
g =

[
a b

c d

]
∈ GL2(C)

∣∣∣∣∣ a d − b c = 1, g−1 =

[
a c

b d

]}

such that for almost all primes p the image of the Frobenius element is

gp =
1√
p
· ρE ,ℓ(σp) ∼

[
e+iθp 0

0 e−iθp

]
=⇒ tr gp = 2 cos θp =

ap√
p
.
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Are the traces
“equidistributed”?
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X0(27) : y 2 − y = x3 − 7

∆(E ) = −39 and j(E ) = 0
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X0(27) : y 2 − y = x3 − 7

∆(E ) = −39 and j(E ) = 0
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X0(11) : y 2 − y = x3 − x2 − 10 x − 20

∆(E ) = −115 and j(E ) = −212 · 313
115
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X0(11)/C : y 2 + x y + y = x2 + x2 − 305 x + 7888

∆(E ) = −1110 and j(E ) = −112
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Sato-Tate Conjecture

Conjecture (Mikio Sato and John Tate, 1965)

Consider an elliptic curve E defined over k = Q without complex

multiplication. Then the angles θp defined by 2 cos θp =
ap√
p

are

equidistributed in [0, π] with respect to the measure dµ =
2

π
sin2 θ dθ.

That is, for any any integrable function F : [0, π]→ C, we have the limit

lim
X→∞

∑
p≤X F (θp)∑

p≤X 1
=

2

π

∫ π

0

F (θ) sin2 θ dθ.

The Prime Number Theorem asserts that

π(X ) =
∑

p≤X

1 ≈ X

logX
≈
∫ X

2

dt

log t
.
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Measures on SU(2)

Proposition

Define the special unitary group

SU2(C) =

{
g =

[
a b

c d

]
∈ GL2(C)

∣∣∣∣∣ a d − b c = 1, g−1 =

[
a c

b d

]}
.

SU2(C) ≃ U1(H) as groups, and SU2(C) ≃ S3(R) as manifolds.

There is a normalized measure µ on SU2(C) such that for any
integrable function G : [−2, 2]→ C we have the integral

∫

SU2(C)

G
(
tr g
)
dµ =

2

π

∫ π

0

G(2 cos θ) sin2 θ dθ.
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Sato-Tate Conjecture Revisited

Conjecture

Consider an elliptic curve E defined over k = Q without complex
multiplication, and denote the normalized continuous complex Galois

representation ρ
(2)
E : Gal

(
Q/Q

)
→ SU2(C) which sends σp 7→ gp.

As tr gp = 2 cos θp, for any integrable class function

[0, π]

2 cos
��

F

((◗
◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

χ : SU2(C)
tr

// [−2, 2] G
// C

we have the limit

lim
X→∞

∑
p≤X χ(gp)∑

p≤X 1
=

∫

SU2(C)

χ(g) dµ.
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Proof of Proposition

By the definition of the special unitary group,

g =

[
a b

c d

]
∈ SU2(C) ⇐⇒

|a|2 + |b|2 = 1

|c |2 + |d |2 = 1

a c + b d = 0

a d − b c = 1

From the latter two identities

a c + b d = 0

a d − b c = 1
⇐⇒ c = − b

|a|2 + |b|2 , d =
a

|a|2 + |b|2 .

We have the well-known result

g =

[
a b

c d

]
∈ SU2(C) ⇐⇒ g =

[
a b

−b a

]
where |a|2+|b|2 = 1.

Algebra / Number Theory / Combinatorics Seminar An Introduction to the Sato-Tate Conjecture



History
Sato-Tate Conjecture

Representations of SU2(C)

Elliptic Curves
Galois Representations
Haar Measures on Unitary Groups

Proof of Proposition

a =
x + i y

2

b =
z + i w

2

=⇒

x = r cos θ

y = r sin θ cosϕ

z = r sin θ sinϕ cosφ

w = r sin θ sinϕ sinφ

where

0 ≤ r

0 ≤ θ ≤ π

0 ≤ ϕ ≤ π

0 ≤ φ ≤ 2 π

The Jacobian of this change of variables is

dx dy dz dw =
(
r3 sin2 θ sinϕ

)
dr dθ dϕ dφ

so we have a normalized measure on SU2(C) defined by

dµ =
sin2 θ sinϕ

2 π2
dθ dϕ dφ.

Noting that tr g = x = 2 cos θ for r = 2, we have the integral
∫

SU2(C)

G
(
tr g
)
dµ =

∫ 2

−2

G(x)

√
4− x2

2π
dx =

2

π

∫ π

0

G(2 cos θ) sin2 θ dθ.
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Modern Form of the Conjecture

Conjecture

Consider an elliptic curve E defined over k = Q without complex
multiplication, and denote the normalized continuous complex Galois
representation

ρ
(2)
E :

Gal
(
Q/Q

)
→ SU2(C)

σp 7→ gp =
1√
p
· ρE ,ℓ(σp)

For any integrable class function χ : SU2(C)→ C we have the limit

lim
X→∞

∑
p≤X χ(gp)∑

p≤X 1
=

∫

SU2(C)

χ(g) dµ.
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How do we prove this?

Peter-Weyl Theorem:

Classify all integrable class functions χ : SU2(C)→ GL(V )→ C
by classifying unitary representations π : SU2(C)→ GL(V ).

Wiener-Ikehara Theorem:

Find an expression for lim
X→∞

∑
p≤X χ(gp) log p

X
.

Abel Summation Formula + Prime Number Theorem:

Find an expression for lim
X→∞

∑
p≤X χ(gp)

π(X )
.
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Peter-Weyl Theorem

Theorem (Fritz Peter and Hermann Weyl, 1927)

Consider an integrable class function

χ : SU2(C)
π−−−−→ GL(V ) −−−−→ C

viewed as a matrix coefficient for a complex representation π.

The collection of such χ is dense in space of continuous class
functions on SU2(C).

Any unitary representation π : SU2(C)→ GL(V ) is the direct sum of
irreducible unitary representations πn : SU2(C)→ GLn(C).

Matrix coefficients χn associated to the πn form an orthonormal
basis for the space of (square) integrable class functions.

Writing χ =
∑

n mn χn, it suffices to show for nontrivial χn that

lim
X→∞

∑
p≤X χn(gp)∑

p≤X 1
=

∫

SU2(C)

χn(g) dµ = 0.
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Symmetric Power Representations

Theorem

The only irreducible unitary representations πn : SU2(C)→ GLn(C) are
the symmetric powers πn = Symn−1, i.e.,

Symn−1 :

[
α

β

]
7→




αn−1

αn−2 β
. . .

αβn−2

βn−1



.

Corollary (Weyl Character Formula)

g ∼
[
α

β

]
=⇒ χn(g) = tr

(
Symn−1 g

)
=

αn − βn

α− β
.
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Symmetric Power Representations

Sketch of Proof: We consider the following diagram:

[
+i θ 0

0 −i θ

] [
0 x

0 0

] [
0 0

y 0

]

︸ ︷︷ ︸
su2(C)

Πn−−−−→ gln(C)

yexp

yexp

yexp

︷ ︸︸ ︷[
e+iθ 0

0 e−iθ

] [
1 ex

0 1

] [
1 0

ey 1

]
SU2(C)

πn−−−−→ GLn(C)

Any continuous representation πn of the Lie group SU2(C) corresponds
to a continuous representation Πn of the Lie algebra su2(C). It suffices to
compute properties of the images of the generators.

Proof #1: Compute eigenvalues and highest weights.

Proof #2: Use the orthogonality of the sine functions.
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Modern Statement via Symmetric Powers

Conjecture

Consider an elliptic curve E defined over k = Q without complex
multiplication, and denote the continuous Galois representation

ρ
(n)
E : Gal

(
Q/Q

)
→ SUn(C) which sends σp 7→ Symn−1 gp.

[0, π]

2 cos
��

F

))❚❚
❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

Gal
(
Q/Q

) ρ
(2)
E

//

ρ
(n)
E

**❱❱
❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

SU2(C)
tr

//

Symn−1

��

χn

**❯❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

[−2, 2] G
// C

SUn(C)
tr

// [−n, n] // C

For all n ≥ 2, we have the limit

lim
X→∞

∑
p≤X χn(gp)∑

p≤X 1
= 0 where χn(gp) = tr ρ

(n)
E (σp).
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Modern Statement via Generating Functions

By the Weyl Character Formula, we know that

χn(gp) =
αn
p − βn

p

αp − βp

for det
[
1− ρ

(2)
E (σp)T

]
=
(
1− αpT

) (
1− βpT

)
.

The Sato-Tate Conjecture can be restated as follows:

Conjecture

Consider an elliptic curve E defined over k = Q with or without complex
multiplication. For X > 2 and |T | < 1, define the generating function

ρE (X ,T ) =

∞∑

n=1

[∑
p≤X χn(gp)∑

p≤X 1

]
T n−1 =

∑
p≤X det

[
1− ρ

(2)
E (σp)T

]−1

∑
p≤X 1

.

Then
lim

X→∞
ρE (X ,T ) = 1 uniformly for |T | < 1.
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X0(11) : y 2 − y = x3 − x2 − 10 x − 20

∑
p≤X χn(gp)∑

p≤X 1
for X ≤ 106 and n = 2, 3, 4
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X0(11)/C : y 2 + x y + y = x2 + x2 − 305 x + 7888

∑
p≤X χn(gp)∑

p≤X 1
for X ≤ 106 and n = 2, 3, 4
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X0(27) : y 2 − y = x3 − 7

∑
p≤X χn(gp)∑

p≤X 1
for X ≤ 106 and n = 2, 3, 4
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Is there another way to compute

∑
p≤X χn(gp)∑

p≤X 1
?
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L-Functions

By considering the Taylor series expansion for log
(
1− z

)
, we have

log det

[
1− ρ

(n)
E (σp)

ps

]
= −

∞∑

e=1

tr ρ
(n)
E (σe

p)

e pes
= −

∞∑

e=1

χn(g
e
p )

e pes
.

For Re(s) > 1 we have L(E , Symn−1, s) =
∏

p det
[
1− ρ

(n)
E (σp) p

−s
]−1

.

The logarithmic derivative gives the expression

−L′(E , Symn−1, s)

L(E , Symn−1, s)
=
∑

p

∞∑

e=1

χn(g
e
p ) log p

pes
=

[
∑

p

χn(gp) log p

ps

]
+RE (s)

in terms of the uniformly bounded error term

RE (s) =
∑

p

∑

2≤e

χn(g
e
p ) log p

pes
=⇒

∣∣RE (s)
∣∣ ≤ n

2
· ζ
(
Re(2 s)

)
.
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Wiener-Ikehara Theorem

Theorem (Shikao Ikehara, 1931; Norbert Wiener, 1932)

Consider a function f : [0,∞)→ R such that

f is nonnegative and nondecreasing.

The following Laplace transform is convergent for Re(s) > 1:

(
L f
)
(s) =

∫ ∞

0

e−st f (t) dt.

The function
(
L f
)
(s) is holomorphic for Re(s) ≥ 1 with at most a

simple pole at s = 1.

Then we have the limit

lim
t→∞

f (t)

et
= lim

s→1
(s − 1) ·

(
L f
)
(s).
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Partial Summation Formula

Corollary

Consider a Dirichlet series L(s) =
∑

k≥1 ak log k/k s, holomorphic for
Re(s) ≥ 1 with at most a simple pole at s = 1. Then we have the limit

lim
X→∞

∑
k≤X ak

X/ logX
= lim

X→∞

∑
k≤X ak log k

X
= lim

s→1
(s − 1) · L(s).

Proof: We will use the following result a couple of times.

Lemma (Niels Henrik Abel, 1826)

Let {fk} and {gk} be two sequences of complex numbers, and denote the
partial sum F (X ) =

∑
k≤X fk . Then for any positive integer N,

N−1∑

k=1

fk gk = F (N − 1) gN +

N−1∑

k=1

F (k)
(
gk − gk+1

)
.
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Proof of Corollary

Denote f (t) = F (et) in terms of fk = ak log k and gk = 1/k s:

(
L f
)
(s) =

∫ ∞

0

e−st f (t) dt = lim
N→∞

[
N−1∑

k=1

F (k)

∫ k+1

k

dX

X s+1

]

= lim
N→∞

1

s

[
N−1∑

k=1

F (k)

(
1

k s
− 1

(k + 1)s

)]

= lim
N→∞

1

s

[
N−1∑

k=1

fk
k s
− F (N − 1)

N s

]
=

L(s)

s
.

Upon writing X = et , we have the limits

lim
X→∞

∑
k≤X fk

X
= lim

t→∞

f (t)

et
= lim

s→1
(s − 1) ·

(
L f
)
(s) = lim

s→1
(s − 1) · L(s).
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Proof of Corollary

Now denote fk = ak log k and gk = 1/ log k :

N−1∑

k=2

ak =
F (N − 1)

logN
+

N−1∑

k=2

F (k)

(
1

log k
− 1

log(k + 1)

)

1

N/ logN

[
N−1∑

k=2

ak

]
=

F (N − 1)

N

+
1

N/ logN

[
N−1∑

k=2

F (k)

(
1

log k
− 1

log(k + 1)

)]

We have the limits

lim
X→∞

∑
k≤X ak

X/ logX
= lim

X→∞

∑
k≤X ak log k

X
= lim

s→1
(s − 1) · L(s).
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Example

Consider an elliptic curve E defined over k = Q. Define the products

L(E , Symn−1, s) =
∏

p

det
[
1− ρ

(n)
E (σp) p

−s
]−1

ζ(s) =
∏

p

[
1− p−s

]−1





for Re(s) > 1.

Define the Dirichlet series as their logarithmic derivatives:

LE (s) =
∑

p

χn(gp) log p

ps
= −

[
L′(E , Symn−1, s)

L(E , Symn−1, s)
+ RE (s)

]

LP1(s) =
∑

p

log p

ps
= −

[
ζ′(s)

ζ(s)
+ RP1(s)

]

Assuming that ρ
(n)
E is modular, we have the identity

lim
X→∞

∑
p≤X χn(gp)∑

p≤X 1
= lim

X→∞

[∑
p≤X χn(gp)

X/ logX

]/[ ∑
p≤X 1

X/ logX

]
=

0

1
.
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Modern Statement via L-Functions

Theorem (Jean-Pierre Serre, 1967)

Consider an elliptic curve E defined over k = Q without complex
multiplication, and denote the continuous Galois representation

ρ
(n)
E : Gal

(
Q/Q

)
→ SUn(C) which sends σp 7→ Symn−1 gp.

Assume ρ
(n)
E is modular for all n ≥ 2.

The L-series L(E , Symn−1, s) is holomorphic and nonvanishing in the
region Re(s) ≥ 1.

We have the limit

lim
X→∞

∑
p≤X χn(gp)∑

p≤X 1
= 0 where χn(gp) = tr ρ

(n)
E (σp).

In particular, the Sato-Tate conjecture holds for E .

Algebra / Number Theory / Combinatorics Seminar An Introduction to the Sato-Tate Conjecture



History
Sato-Tate Conjecture

Representations of SU2(C)

Peter-Weyl Theorem
Wiener-Ikehara Theorem
Langlands Functoriality

Modern Statement via L-Functions

Conjecture

Consider an elliptic curve E defined over k = Q without complex

multiplication. Then ρ
(n)
E is modular for all n ≥ 2.

What’s known about this conjecture?

n = 2: Equivalent to a Conjecture of Goro Shimura and Yutaka
Taniyama from 1955. Partially proved by Andrew Wiles in 1994; and
then completely by Christophe Breuil, Brian Conrad, Fred Diamond,
and Richard Taylor in 2001.

n = 3: Proved by Steve Gelbart and Hervé Jacquet in 1978.

n = 4: Proved by Henry Kim and Freydoon Shahidi in 2002.

n = 5: Proved by Henry Kim in 2003.

n even: Proved by Laurent Clozel, Michael Harris, Nicholas
Shepherd-Barron and Richard Taylor in 2006. This case suffices to
prove the Sato-Tate Conjecture.
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Katz-Sarnak Hueristic

Recall that SU2(C) ≃ U1(H).

Conjecture (Nicholas Katz and Peter Sarnak, 1999)

Say that A is an abelian variety of dimension d . Consider a “large”
normalized continuous representation

ρ
(d)
A : Gal

(
Q/Q

)
→ Ud (H) which sends σp 7→ gp =

1√
p
· ρA,ℓ(σp).

The map Gal
(
Q/Q

)
→ [−2d , 2d ] which sends σp 7→ tr gp is a

distribution. That is, there is a normalized measure µ on Ud(H) such that
for any any integrable class function χ : Ud (H)→ C we have the limit

lim
X→∞

∑
p≤X χ(gp)∑

p≤X 1
=

∫

Ud (H)

χ(g) dµ.
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Questions?
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