Martin Bobb (UT Austin)
TBA
TBA
The talk will concentrate on open questions related to the optimal bounds for the discrepancy of an $N$-point set in the $d$-dimensional unit cube. The so-called star-discrepancy measures the difference between the actual and expected number of […]
Gordian Knots According to the legend of Phrygian Gordium, Alexander the Great cut the ``Gordian Knot’’ and eventually went on to rule Asia thereby fulfilling an ancient prophecy. Where there are […]
Gordian Knots According to the legend of Phrygian Gordium, Alexander the Great cut the ``Gordian Knot’’ and eventually went on to rule Asia thereby fulfilling an ancient prophecy. Where there are […]
Abstract TBA
Abstract TBA
The bridge distance and the topological index are measures of the complexity of the bridge splitting of a knot. In 2016, Johnson and Moriah gave a formula for the bridge distance of the canonical bridge sphere of a knot in a highly twisted plat projection in terms of the height and the width of the […]
This triple-header of topology talks will include three speakers: First, Hyeran Cho from The Ohio State University will speak about Derivation of Schubert normal forms of 2-bridge knots from (1,1)-diagrams. In this talk, we show that the dual (1, 1)-diagram of a (1, 1)-diagram (a.k.a. a two pointed genus one Heegaard diagram) D(a, 0, 1, […]
I will discuss joint work with Jim Hoste, where we prove that a unique folded strip of paper can follow any polygonal knot with odd stick number. In the even […]
Title: Understanding Structure in the Single Variable Knot Polynomials Abstract: We examine the dimensionality and internal structure of the aggregated data produced by the Alexander, Jones, and Z0 polynomials using topological data analysis and dimensional reduction […]
Title: Biquandle Brackets and Knotoids Abstract: Biquandle brackets are a type of quantum enhancement of the biquandle counting invariant for oriented knots and links, defined by a set of skein relations with coefficients which are functions of biquandle colors at a crossing. In this talk we use biquandle brackets to enhance the biquandle counting matrix […]
One of the main drivers of current research in geometry is the classification of Calabi-Yau threefolds. Towards this effort, a particular approach in algebraic geometry is via the study of stability conditions. In this talk, I will explain what constitutes a notion of stability in algebraic geometry, and what the challenges are in studying them.