History and Philosophy of Mathematics Seminar: Julia Tomasson (Columbia University)
On ZoomInventing the ‘Islamic Golden Age’: Orientalism and the History of Mathematics Abstract: TBA
Inventing the ‘Islamic Golden Age’: Orientalism and the History of Mathematics Abstract: TBA
We explore the application of spectral graph theory to the problem of characterizing linguistically-significant classes of tree structures. We focus on various classes of syntactically-defined tree graphs, and show that the spectral properties of different matrix representations of these classes of trees provide insight into the linguistic properties that characterize these classes. More generally, our […]
Stay tuned for more details about this special event!
Young diagrams are all possible arrangements of n boxes into rows and columns, with the number of boxes in each subsequent row weakly decreasing. For a partition λ of n, a standard Young tableau S of shape λ is built from the Young diagram of shape λ by filling it with the numbers 1 to […]
Suppose you are given a data set that can be viewed as a nonnegative integer-valued function defined on a finite set. A natural question to ask is whether the data can be viewed as a sample from the uniform distribution on the set, in which case you might want to apply some sort of test […]
As $\lambda$ runs through all integer partitions, the set of Schur functions $\{s_{\lambda}\}_\lambda$ forms a basis in the ring of symmetric functions. Hence the rule $$s_{\lambda}s_{\mu}=\sum c_{\lambda,\mu}^{\gamma} s_{\gamma}$$ makes sense and the coefficients $c_{\lambda,\mu}^{\gamma}$ are called \textit{Littlewood-Richardson (LR) coefficients}. The calculations of Littlewood-Richardson coefficients has been an important problem from the first time they were […]
I will explain how to apply presentations of algebras (together with some classical results from non-commutative algebra) to obtain some 5 polynomial invariants telling us when two pairs of 2x2 matrices over a commutative ring are conjugate, assuming that each of these pairs generate the matrix algebra. This talk is based on my joint paper […]
In 1932, Tarski conjectured that a convex body of width 1 can be covered by planks, regions between two parallel hyperplanes, only if the total width of planks is at least 1. In 1951, Bang proved the conjecture of Tarski. In this work we study the polynomial version of Tarski's plank problem. We note that […]
Peg solitaire is a popular one person board game that has been played in many countries on various board shapes. Recently, peg solitaire has been studied extensively in two colors on mathematical graphs. We will present our rules for multiple color peg solitaire on graphs. We will present some student and faculty results classifying the solvability of the game […]
We describe a natural way to continuously extend arithmetic functions that admit a Ramanujan expansion and derive the conditions under which such an extension exists. In particular, we show that the absolute convergence of a Ramanujan expansion does not guarantee the convergence of its real variable generalization. We take the divisor function as a case […]
By Hilbert’s theorem 90, if K is a cyclic number field with Galois group generated by g, then any element of norm 1 can be written as a/g(a). This gives rise to a natural height function on elements of norm 1. I’ll discuss equidistribution problems and show that these norm 1 elements are equidistributed (in […]
This talk is based on joint work with Jens Marklof, and with Roland Roeder. The three distance theorem states that, if x is any real number and N is any positive integer, the points x, 2x, … , Nx modulo 1 partition the unit interval into component intervals having at most 3 distinct lengths. We […]