The Kauffman bracket skein algebra was originally defined as a generalization of the Jones polynomial for knots and links on a surface and is one of the few quantum invariants where the connection to hyperbolic geometry is fairly well-established. Explicating this connection to hyperbolic geometry requires an understanding of the non-commutative structure of the skein algebra, […]
When first learning how to write mathematical proofs, it is often easier for students to work with statements using the universal quantifier. Results that single out special cases might initially come across as more puzzling or even mysterious. Explanatory proofs, in the sense of Steiner, transform what might initially seem mysterious or even magical into […]
In this talk we introduce a new modification of the Jacobi-Perron algorithm in the three dimensional case. This algorithm is periodic for the case of totally-real conjugate cubic vectors. To the best of our knowledge this is the first Jacobi-Perron type algorithm for which the cubic periodicity is proven. This provides an answer in the […]
In this talk we will survey recent developments in the use of ternary algebraic structures known as Niebrzydowski Tribrackets in defining invariants of knots, with some perhaps surprising applications.
Given a homogeneous multilinear polynomial F(x) in n variables with integer coefficients, we obtain some sufficient conditions for it to represent all the integers. Further, we derive effective results, establishing bounds on the size of a solution x to the equation F(x) = b, where b is any integer. For a special class of polynomials […]
This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media.